PHYSICAL CHEMISTRY

DPP No. 21

Total Marks: 28

Max. Time: 32 min.

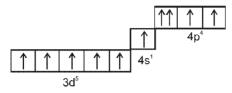
Topic: Atomic Structure

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.4

(3 marks, 3 min.)


[12, 12]

Subjective Questions ('-1' negative marking) Q.5 to Q.8

(4 marks, 5 min.)

[16, 20]

1. In the following electronic configuration, some rules have been violated:

I: Hund

II: Pauli's exclusion

III: Aufbau

(A) I and II

(B) I and III

(C) II and III

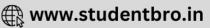
(D) I, II and III

- 2. What is the potential difference through which an electron, with a de Broglie wavelength of 1.5 Å should be accelerated, if its de Broglie wavelength has to be reduced to 1 Å:
 - (A) 110 volts
- (B) 70 volts
- (C) 83 volts
- (D) 55 volts
- 3. X^{2+} is isoelectronic with sulphur and has (Z + 2) neutrons (Z is atomic no. of element X). Hence, mass number of X2+ is:
 - (A) 34
- (B) 36
- (C) 38
- (D) 40
- Which of the following compounds is isoelectronic with [NH₂ → BH₂]: 4.
 - (A) B_2H_6
- (B) C₂H₆
- (C) C₂H₄
- (D) C₃H₆
- 5. A neutral atom of an element has 2K, 8L, 9M and 2N electrons. Find out the following:
 - (a) Atomic number of element
- (b) Total number of s electrons
- (c) Total number of p electrons
- (d) Total number of d electrons
- (e) Number of unpaired electrons in element
- 6. Calculate:
 - (a) the value of spin only magnetic moment of Co³⁺ ion (in BM).
 - (b) the number of radial nodes in a 3p-orbital.
 - (c) the number of electrons with (m = 0) in Mn^{2+} ion.
 - (d) the orbital angular momentum for the unpaired electron in V⁴⁺.
- 7. An element undergoes a reaction as shown:

$$X + e^- \rightarrow X^-$$

Energy released = 30.876 eV

The energy released, is used to dissociate 8 g of H₂ molecules equally into H⁺ and H⁺, where H⁺ is in an excited state, in which the electron travels a path length equal to four times its debroglie wavelength.


(a) Determine the least amount (moles) of 'X' that would be required.

Given: I.E. of H = 13.6 eV/atom

Bond energy of $H_2 = 4.526$ eV/molecule.

- (b) Why is the amount of X calculated in the above question 'least'?
- 8. A compound of Vanadium has a spin magentic moment 1.73 BM. Work out the electronic configuration of the Vanadium ion in the compound.

nswer Kev

DPP No. #21

1. (C)

2.

(C)

3.

(C)

(B) 4.

5.

(a) 21 (b) 8 (c) 12 (d) 1

(e) 1. 6.

(a) $\sqrt{24}$ or 4.9 BM (b) 1 (c) 11

7.

(a) a = 4 moles.

8.

 $_{23}V^{4+}$: 1s², 2s² 2p⁶, 3s² 3p⁶ 3d¹

ts & Solut

DPP No. #21

1. Definition

2.
$$\lambda = \frac{12.3}{\sqrt{V}}$$
.

3.
$$_{16}S^{32} = e^{-} = 16$$

 $x^{+2} = e^{-} = 16$
 $(\because A = Z + N)$

4. (B) has same number of electrons i.e., 18. $[NH_3 \rightarrow BH_3] = 10 + 8 = 18.$

5. E.C.
$$\rightarrow$$
 1s²,2s²,2p⁶,3s²,3p⁶,3d¹,4s²

(a) Co^{3+} : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$... 4 unpaired electrons ... $\mu = \sqrt{4(4+2)} = \sqrt{24} = 4.9$ BM 6.

(b) Number of radial nodes = $n - \ell - 1$ Number of radial nodes in 3p orbital = 3 - 1 - 1 = 1

(c) Number of electrons with (m = 0) in Mn^{2+} (1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵) ion = 1s (2) + 2s (2) + 2p (2) + 3s (2) +3p(2) + 3d(1) = 11

(d) Orbital angular momentum for the unpaired electron in V^{4+} lies in 3d orbital. $\ell = 2$

∴ Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi} = \frac{\sqrt{6} h}{2\pi}$

7. (a) $x + e^- \rightarrow x^$ energy released = E.A₁ = 30.87 eV/atom Let no. of moles of X be a \therefore $a \times N_A \times 30.87 = 4 \times N_A \times 4.526 + 4 \times N_A \times 13.6 + 4 \times N_A \times 12.75 \Rightarrow a = 4 \text{ moles}.$

8. Number of unpiared electron are given by

Magnetic moment =
$$\sqrt{[n(n+2)]}$$
 B.M.

where n is number of unpaired electrons

or
$$1.73 = \sqrt{[n(n+2)]}$$
 or $1.73 \times 1.73 = n^2 + 2n$... $n = 1$

Now Vanadium atom must have one unpaired electron and thus its configuration is $_{23}V^{4+}$: $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$ $3d^1$

